Greyscale Sprite Byte Boundary

RenderSpriteS:

; a = Length

 srl d

; d = Data Layer1

 rr e

; b = Data Layer2

 and a

 rr b
 rr c

 dec a

 jr nz, RenderSpriteS
This routine should be rather common to anyone who drew Sprites before. This is more or less what most routines to draw a sprite do to make shift it to the correct position. Here, we’re assumming that “d” holds the data for the first grey layer and that “b” holds the data for the second layer. Here, we’re interrested in optimizating this code for speed which means we don’t really care about the size.

The first thing we’ll do is to use the register in an intelligent way. In other words, we’ll fixup our code so that we can use faster instructions which operates on certain registers only. Most of them are notably the “a” register. And fortunatelly in this case, the “b” register also. So we’ll simply swap “a” and “b” registers in the following code and notice the loop now. Thoses 2 last instructions can be replaced by a “djnz RenderSpriteS”. Since we’re doing a “rr” on “a” we should use the faster instruction “rra”. At this point most coders would call this quit. But It’s way too early to give up.

The first thing we’ll do is to separate the 2 layers in 2 different loops. This part here really doesn’t optimize anything for now, I agree, but be patient and you’ll see. Now since we have 2 different loops, instead of using “e” for the first layer, let’s use “a” which will be faster to use in the loop. Let us go even further and use only one register instead of 2. We’ll also be unrolling the loop to save the cycles on the djnz. To unroll, we’ll jump to “$ + Number of shifts * 3”. To achieve this, we’ll have to patch that value to a jump which will be located right above the start. The factor of 3 is the length of the code which has to be skipped everytime. Also, we’ll kill that extra and in between every instructions and simply make sure that the later letter is null. Let’s see what this code will give now.

 ld e, 0

 ld c, e

 ld c, a

 add a, a

 add a, c

 add a, 2

 ld (Layer1), a

 ld (Layer2), a

RenderSprite:

Layer1 equ $ + 1

 jr $ + 2

 rra

 rr e

 rra

 rr e

 rra

 rr e

 rra

 rr e

 rra

 rr e

 rra

 rr e

 rra

 rr e

 ld d, a

 ld a, b

; Do the same thing for layer2

Alright, let’s pull out our pen and calculate this thing without the prefetch. So before everything operated under the formula “52X” where X was the shifting amounth and where X was ranging from [1..8] now we have a routine with a formula “76 + 24X” where X ranges from [0..7]. What this is telling us is that for the first case of X of each function, the fisrt routine was better off, although right at the second value possible for X, we’re already optimizing the speed so we made a pretty good contribution here. Let’s check the worst case. 416cycles for the first but a mere 244 for the later. That’s 42% faster then our previous routine.

Although, it’s very important that you know your cases. Suppose that your routine’s 2 first X value outweights much more the other cases, you might preffer to optimize for the case where the 2 X are optium. In such case, you can make modifications to the first routine in order to optimize the 2 first cases. Following the formula “11 + 41X”. Where our previous routine is only better for the 2 first cases following the first one. Since the first case is X=8 (no shifts) is way longer then (X=0) on our long version.

 ld e, 0

 ld c, e

RenderSpriteS

 srl d
 rr e
 rra

 rr c

 djnz RenderSpriteS
